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Abstract

The prediction of multivariate outcomes in a linear regression setting with a large number of potential re-

gressors is a common problem in macroeconomic and financial forecasting. We exploit that the frequently

encountered problem of nearly collinear regressors can be addressed using standard shrinkage type es-

timation. Moreover, independently of near collinearity issues, when the outcomes are high-dimensional

correlated random variables, univariate forecasting is often sub-optimal and can be improved upon by

shrinkage based on a canonical correlation analysis. In this paper, we consider a family of models for

multivariate prediction that employ both types of shrinkage to identify a parsimonious set of common

forecasting factors with the ability to enforce factor interpretability via variable grouping constraints

implied by economic theory. As an important special case, our approach generalizes principal component

regression by applying reduced rank rather than linear regression to the principal components of the

regressors, thereby disentangling the forecasting factors driving the outcomes from the factor structure

in the predictors. We illustrate its promising performance in applications to several standard forecasting

problems in macroeconomics and finance relative to existing approaches. In particular, we show that a

single factor model can almost double the predictability of one-month bond excess returns across a wide

maturity range by using a set of predictors combining yield slopes and the maturity related cycles of

Cieslak and Povala (2011).
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1. Introduction

Let Y be a m dimensional vector of variables of interest that the econometrician wishes to

predict using a vector, X, consisting of a large but finite number n random variables. In the

time series context, Y = Yt+h and X = Xt, and X possibly contains lagged elements of Y itself.1

The goal is to identify the best linear predictor in the mean squared error sense based on the

multivariate regression:

Y = XΘ+ e , Θ ∈ R
n×m (1)

where Y,X are the (T ×m) and (T × n) matrices of stacked observations of outcomes, Y , and

predictors, X, and e is a T ×m matrix of residual terms.

Prediction of multivariate outcomes based on a multivariate regression (1) with a large

number of non-orthogonal regressors is commonplace in macroeconomics and finance. Stock

and Watson (2011), for instance, consider forecasting m = 35 macro aggregates and m = 108

disaggregate series using the latter as n = 108 predictors for T = 195 quarters of observations.

Cieslak and Povala (2011) extend Cochrane and Piazzesi (2005) to forecast up to m = 20 bond

excess returns using up to n = 20 predictors derived from lagged yields and inflation for T = 468

monthly observations. We shall study these two examples in greater detail below, noting that

there appears to be scope for disentangling the forecasting factors driving the outcomes from

the factor structure in the predictors.2 In many such forecasting applications, alternatives to

ordinary least squares (OLS) are preferable due to the common occurrence of one or more of

the following three features of the problem:

First, when the number of predictors, n, is larger than the number of observations, T , OLS

is infeasible. Even when n < T but n is large, the sheer number of potential right hand side

predictors leads to an in-sample over-fitting problem. One way to address this problem, as we

shall in this paper, is to postulate that X contains a smaller number k � n components, Z that

predict Y:

Y = ZB + e , B ∈ R
k×m (2)

In reality, all n dimensions of the data may of course contain useful information for predicting

Y and the justification for focussing on k � n components is therefore that the signal-to-noise

ratio in the relationship between Y and the remaining n−k components is so poor that it would

degrade the forecasting performance of the model to include them. In practice, the dimension k

is therefore a key “bandwidth” parameter to be chosen by the econometrician (and one for which

a strong prior is often not available). When Z consists of k elements or k linear combinations

1Without loss of generality, we shall assume throughout that X,Y are zero mean.
2For example, Cochrane and Piazzesi (2005) find that bond excess returns are driven by a single forecasting

factor extracted from bond yields, which in turn are known to have three or higher dimensional factor structure.

2



of X, this is known as the variable selection and factor selection problems respectively. In this

paper we focus strictly on the factor selection problem and propose a way to enforce factor

interpretability via variable grouping constraints consistent with economic theory as a middle

ground between factor selection and variable selection.

Second, while near collinearity of the predictors necessarily occurs when n ≈ T , it is a

prominent feature of the problem in some financial datasets even when n � T , especially

when series are connected by a (near) arbitrage relationship or (near) accounting identity. The

ill-condition of the design matrix, X, typically results in severe instability of the estimated

relationship between Y and X and a poor out-of-sample forecasting performance. A general

framework for addressing an ill-conditioned system (1) is regularization, which naturally leads

to a shrinkage type estimator that we shall use extensively in this paper.

Finally, when the dimension of Y is m ≥ 2 and the elements of Y are correlated variables,

näıve OLS may be dominated by a shrinkage estimator that exploits the structure of the canoni-

cal covariates of Y andX.3 In other words, forecasting multiple outcomes using a smaller number

of common forecasting factors imposes discipline on the factor extraction problem. When the

design matrix is also ill conditioned, the two types of shrinkage estimation may be combined

to produce a robust forecasting model. A main contribution of this paper is the development

of a family of estimators of Θ that apply standard regularization techniques (to deal with near

collinarity) to standard dimension reduction techniques (in order to exploit covariance between

X and Y) that provides the econometrician with a flexible framework for extracting common

predictive factor structures in the data. The common thread of these dimension reduction tech-

niques is that they all solve a constrained maximization problem which can be formulated as a

generalized eigenvalue problem involving ill-conditioned matrices to which regularization can be

applied.

The current paper focusses on developing an important sub-class of these forecasting models,

called Regularized Reduced Rank Regression models, or simply RRRR. We demonstrate that

the proposed RRRR estimators perform very well across a range of applications to both the

Stock and Watson (2011) macro data set as well as bond excess returns, and investigate a

number of fixed and data driven methods for the choice of regularization threshold and dimension

reduction. We find that the method of regularization has a non-trivial impact on forecasting

performance. In particular, we find that the commonly used Tihonov regularization performs

noticeably worse in our macro application than the simpler spectral truncation method which is

a natural extension of principal components regression (PCR) to the reduced rank framework.

In all our applications, the RRRR model is among the best performing and most parsimo-

nious ones for out-of-sample prediction. In particular, we refine the Stock and Watson (2011)

finding that roughly 5 important forecasting factors are optimal to extract via PCR-5 from the

3This situation arises naturally when the Y s themselves exhibit a strong (predictable) factor structure, as often
the case in macroeconomics and finance.
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108 individual predictors they consider by showing the clear benefit from forming the forecasting

factor space as a 5-dimensional subspace of the first 10 principal components via our RRRR5-

PC10 model rather than as the full span of the first 5 or more principal components extracted

via PCR. Apart from exploiting the fact that the dimension of the forecasting factor space can in

general be lower than the number of relevant principal components that can be extracted from

the available predictor set, as an additional benefit from applying RRRR in the context of the

Stock and Watson (2011) analysis, we are able to shed light on the economic interpretation of

the extracted statistical factors by incorporating variable grouping constraints implied by eco-

nomic theory within the factor extraction procedure. Specifically, when jointly forecasting the

35 Macro aggregates in the Stock and Watson (2011) data set we find that splitting the available

predictors into two disjoint groups of macro and financial variables leads to similar forecasting

performance of the extracted 5 forecasting factors via RRRR but now further revealing that

those formed from macro rather than financial variables are of primary importance.

In the case of the notoriously hard problem of forecasting 1-month bond excess returns,

we investigate a number of different predictors considered in the literature, including maturity

related inflation cycles (henceforth “cycles”), forward rates, forward slopes, and the current yield

slopes. Across all specifications, the RRRR is consistently among the best performing methods,

while parsimoniously relying on a single common forecasting factor to predict the entire curve of

bond excess returns (1-month excess returns to holding bonds of maturity from 1 to 15 years),

consistent with the presence of a strong factor structure in the cross-section of bond returns. In

particular, we confirm a recent result by Cieslak and Povala (2011) which suggests that a single

or two factor model based on cycles is useful for jointly predicting holding period returns. We are

able to improve somewhat on this result by including individual cycles as predictors and letting

RRRR extract a single predictive factor that captures the relevant information. Remarkably,

the out-of-sample R-squared of the non-overlapping monthly forecasts can be almost doubled by

including current slopes along with cycles, but due to the severe ill-condition, only the RRRR

approach is fully able to take advantage of the extra information.

The remainder of the paper is structured as follows. In Section 2, we briefly review regular-

ization as a general technique to deal with high dimensional predictor sets and near collinearity.

In Section 3, we discuss how shrinkage estimation arises naturally in the context of a multivari-

ate response Y . We then turn to developing the Regularized Reduced Rank Regression (RRRR)

model in Section 4, provide consistency results in Section 5, and tackle the issue of factor in-

terpretability in Section 6. Data driven techniques for choosing the degree of regularization

and dimension reduction are discussed in Section 7 while Section 8 documents the efficacy of

RRRR as a forecasting model in our application to the Stock and Watson (2011) macro data

and bond return forecasting. We find promising performance compared to other commonly used

techniques, although we stress that no one method is uniformly best across datasets and sample

periods. Section 9 concludes.
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1.1. Related Literature

The RRRR framework involves the choice of two shrinkage parameters: the degree of reg-

ularization, which we denote by ρ, and the predictor dimension k. There is a vast literature

dealing with each of these types of shrinkage both from the frequentist and Bayesian perspective.

In the extensive Bayesian forecasting literature, the ill-condition of the system (1) is naturally

dealt with by transforming the problem of determining a point estimate in R
n×m into a well-

posed extension on the larger space of distributions. The precision of the Gaussian prior on the

regression coefficients Θ can be interpreted as a regularization parameter. Of particular relevance

to our multivariate setting is Doan, Litterman, and Sims (1984) who consider Bayesian VAR

forecasting, Koop and Potter (2004) who consider Bayesian forecasting in dynamic factor models

with many regressors, and Geweke (1996), who proposed Bayesian estimation of reduced rank

regressions. Although Geweke (1996) proposes a Bayesian model selection approach to choosing

k there is no mention of the choice of prior variance, ρ, as ill-conditioned design matrices are

not his focus. Moreover, the parametrization of the Bayesian reduced rank regression is not

in terms of an easily interpretable prior on Θ that can be understood as a regularization of

the corresponding frequentist model.4 Carriero, Kapetanios, and Marcellino (2011) apply the

Geweke (1996) model to the Stock and Watson macro variables and find that the dimension

reduction of RRR in combination with Bayesian shrinkage is beneficial. This finding is consistent

with the results we obtain in this paper (which employs what amounts to different Bayesian

priors) for both macro variables as well as bond returns. However, we note that the estimator

we propose in this paper is computationally trivial even for very large panels (i.e. solving for

the largest eigenvalues of a single generalized eigenvalue problem is near instantaneous even

for n ∼ 1000) whereas the computational effort of the Bayesian reduced rank regression is

considerable for even modest n ∼ 50 as pointed out by Carriero et al. (2011).

Another rich strand of the Bayesian literature, concerned with model selection procedures,

attempts to pick a subset of predictor variables from the original n predictors of Y . In the

Bayesian framework, one needs the marginal distribution of the data, the prior probabilities of

each of the 2n models and the ability to compute the posterior distribution of the parameters of

interest for each model. In the context of linear regression, each of these components is available

in closed form, as shown in Raftery, Madigan, and Hoeting (1997). The main problem is that the

model space quickly gets too large , even for modest size n, and the estimation of posterior model

probabilities and Bayesian model averaging must be based on a subset of models. The factor

approach implied by reduced rank regression circumvents the curse of dimensionality at the cost

of the potential loss of interpretability of the resulting factors which are linear combinations of

many, typically disparate, regressors. In Section 6 we directly address this concern and suggest

4To be precise, the reduced rank regression coefficient is Θ = AB where Θ is of rank k < n. Geweke (1996)
considers separate (independent) Gaussian priors on A and B which are hard to interpret as it is the product AB
that has economic meaning.
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a practical approach for imposing a degree of interpretability on the factor structure by means

of variable grouping constraints as dictated by economic theory.

In the frequentist forecasting literature, Principal Component Regression (PCR) is perhaps

the most frequently used method for dealing with ill-conditioned systems. Similarly to RRRR,

PCR achieves regularization via down-weighting (in fact eliminating) the influence of small

eigenvalues of SXX but differs from RRRR in that it does not incorporate any information

from the cross-moment matrix, SXY , in the factor selection. A prominent example of PCR in

macroeconomic forecasting is Stock and Watson (1998), who suggest forecasting key variables

like inflation and output using factors extracted from an extensive set of macroeconomic time

series and choosing the number of factors based on out-of-sample forecasting performance.5

The Partial Least Squares (PLS) of Wold (1966), is explicitly designed to exploit the infor-

mation contained in SXY and has a long history in chemometrics. More recently, PLS has also

been applied in economics and is closely related to the 3PRF model recently proposed by Kelly

and Pruitt (2011b) and applied to forecasting of stock returns and dividend growth in Kelly

and Pruitt (2011a).6 While the PLS approach effectively sidesteps the issue of ill-conditioned

SXX (in fact one of the original motivations for its introduction), it is not in general a shrinkage

technique and differs from the estimators considered in this paper that can be cast as an explicit

penalized least squares objective function involving two distinct shrinkage parameters.

Finally, a recent paper by Chen, Chan, and Stenseth (2012) studying micro array gene ex-

pression data suggests what amounts to regularizing reduced rank regression with a LASSO type

penalty, similar to that used by Mol, Giannone, and Reichlin (2008) in a univariate forecasting

context. The model of Chen et al. (2012) can be seen as an alternative to the RRRR methods

proposed here albeit with a non-smooth penalty and without the advantage of a closed form

solution. The main advantage of the LASSO specification is the sparsity of the resulting factors

in each subsample, but with the common drawback of instability across subsamples as pointed

out by Mol et al. (2008). Besides, sparsity need not necessarily guarantee interpretability of the

factors. The comparison to the RRRR methods of this paper for forecasting macro economic

and financial time series, particularly with economic interpretability in mind, will be the subject

of future work.

2. Regularization and Latent Factor Extraction

For given data Y,X, on T observations of an m dimensional vector of outcomes, Y and

an n dimensional vector of predictors, X, the classical latent factor models posit that a set of

k � n linear combinations A′X contain the useful information for forecasting Y in the sense

5This is clearly different from exploiting the information in the SXY matrix because the most important
forecasting factors may not be the most important factors in explaining X.

6Both of these studies focus exclusively on forecasting univariate outcome series, while RRRR aims more
generally to extract a parsimonious set of forecasting factors driving multiple outcomes.
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that E[Y |A′X] ≈ E[Y |X]. The use of “≈” refers to the fact all dimensions of X may contain

some additional information about Y , but that any forecasting factors beyond the first k have

an unfavorable signal to noise ratio and adding them would lead to a deterioration in the mean

squared forecast error.

A number of classical latent factor models discussed below were developed under the explicit

assumption that T → ∞ for fixed m,n, and therefore not suited for large panels without

further restrictions imposed. Regularization provides one such coherent scheme for imposing

such restrictions.

2.1. Latent Predictive Factor Extraction Techniques

Consider the problem of capturing the covariation between X and Y through a set of k ≤
min(n,m) maximally covarying linear combinations α′X and β′Y where α = {α1, . . . αk} ∈
R
n×k and β = {β1, . . . , βk} ∈ R

m×k. In general, the weights (αi, βi) can be solved for recursively

such that they are normalized and satisfy a set of orthogonality constraints to ensure a unique

solution (see e.g. Burnham, Viveros, and MacGregor (1996)):

max
{αi,βi}

α′
iSXY βi , s.t. α′

iM1αi = 1, β′
iM2βi = 1, ∀j < i : α′

iM3αj = 0 (3)

Several of the most popular dimension reduction techniques, including Hotelling’s canonical

correlation analysis (CCA), the Reduced Rank Regression (RRR) of Izenman (1975), and the

SIMPLS version (due to de Jong (1993)) of the PLS estimator of Wold (1966) fall within the

framework in (3), as shown in Table 1. Thus all these techniques are quite closely related

and share the objective of summarizing the information about the co-movement of X and Y

contained in the SXY matrix. This is in stark contrast to the popular principal components

regression analysis (PCR) which instead solves for a set of k < n weights α so that the resulting

factors α′X summarize the variation in X:

max
{αi}

α′
iSXXαi , s.t. α′

iM1αi = 1, ∀j < i : α′
iM3αj = 0 (4)

Table 1: Linear restrictions associated with each dimension reduction technique.

CCA RRR SIMPLS PLS† PCR‡

M1 SXX SXX In In − Pi SXX

M2 SY Y Im Im Im ·
M3 SXX SXX SXX SXX SXX

†The original Wold (1966) PLS specification has a non-constant M1 matrix due to the
iterative deflation of X. Here Pi is the projection onto the space of i − 1 previously

extracted components. ‡The PCR objective is different and does not involve β.

In the classical analysis, m,n are fixed and T → ∞, so that M1,M2 can be assumed to
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be well-behaved in the limit and (3) can be analyzed using the classical results on constrained

eigenvalue problems in e.g. Rao (1964). In practice, however, problems arise when either M1 or

M2 are ill-conditioned.7 To see the cause of the problem, consider the case of CCA and RRR .

In this case one may concentrate out β in (4) to obtain α as the eigenvectors corresponding to

the k principal eigenvalues of the generalized eigenvalue problem:

∣∣SXY M
−1
2 S′

XY − λM1

∣∣ = 0 (5)

The expression (5) is also known as a matrix pencil and it is well-known from the theory of

singular matrix pencils that when the matrices M1 and/or M2 are ill-conditioned, the solution

to the generalized eigenvalue problem becomes extremely unstable (c.f. Gantmacher (1960)).

By contrast, SIMPLS, PLS and PCR do not face this problem since M1 and M2 are well behaved

by definition (for PCR there is no M2).

A natural approach to address this problem afflicting CCA and RRR is to regularize the

two matrices, i.e. replace them by perturbed versions that have bounded inverses, and different

regularization schemes will differ in the way this perturbation is carried out. In Vinod (1976), it

was proposed to apply a ridge penalty in the CCA setting to extracting a single canonical variate.

However, recognizing the common structure of (5), it is clear that the same regularization idea

applies to CCA, RRR and SIMPLS more generally.8

In this paper, we choose to focus on the RRR case rather than CCA, so that our main

concern is the ill-condition of SXX . The reason for this is twofold. First, we are usually

ultimately interested in the forecast of specific quantities with clear economic interpretation and

not a rotated set of statistical “portfolios”. Second, in our implementation of RRRR, we allow

for a weighting matrix, W , to be applied which will play the role of M−1
2 , but specified to be

well-behaved (typically equal to Im or a diagonal matrix containing the inverse variances of Y

in applications). Since one is free to let W equal a regularized inverse of SY Y , regularized CCA

is a special case of the RRRR considered in this paper.

2.2. Regularization and Filter Factors

In classical regression analysis, regularization is a particular method for shrinking the set

of admissible predictors that essentially involves a delicate trade-off between over- and under-

fitting of the data. In this section we introduce filter-factors and two regularization schemes

with long histories in applied work that differ dramatically in their treatment of eigenvalues

of “intermediate” size. The first method, known either as Spectral Truncation or Principal

Components Regression (PCR), eliminates eigenvalues of X that fall below a chosen threshold

7This was recognized early on in the canonical correlations literature by Vinod (1976)) but to our knowledge
the use of regularized CCA never received much attention in the subsequent econometric literature on large panels.

8Albeit structurally different, we conjecture that PLS might well benefit from some degree of “pre-
regularization” in certain situations.
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while the second scheme, Tikhonov regularization, down-weights small eigenvalues depending

on their size.9 Since the “optimal” filter factors depend on the properties of the un-known noise,

there is in general no ex-ante preferred scheme and the performance of each must be evaluated

in applications.

Unless otherwise indicated, we shall for notational simplicity assume that T > n and work

with two matrix norms compatible with a mean squared error forecast objective. On the space

of positive semidefinite (PSD) n × n matrices, S, we define ‖S‖ = tr{S}. On the space of real

n×m matrices, A, we shall use the Frobenius norm, ‖A‖ = tr{A′A}1/2. Throughout we use the
notation SXY = X′Y/T for the sample covariance matrix of two generic data matrices X and

Y.

2.2.1. Regularized Least Squares

To understand the rationale behind different regularization schemes, it is instructive to con-

sider the baseline linear regression case. The properties of the linear system (1) are completely

determined by the singular value decomposition of the matrix X:

X = UΣV ′ =
n∑

i=1

σiuiv
′
i (6)

where U = (u1, . . . , un) ∈ R
T×n, V = (v1, . . . , vn) ∈ R

n×n are orthonormal matrices and Σ =

diag(σ1, . . . , σn) is a diagonal matrix containing the singular values in decreasing order. We

shall often need to decompose X into the contribution from the r largest singular values versus

the contribution from the n− r smallest singular values:

X = UrΣrV
′
r + Un−rΣn−rV

′
n−r (7)

where U = [Ur Un−r], V = [Vr Vn−r], and Σ =

[
Σr 0

0 Σn−r

]

The matrix X, and hence the system (1), is called ill-conditioned if the following two con-

ditions are satisfied: a) The condition number σ1/σn is large, and b) The sequence of singular

values σ1 ≥ · · · ≥ σn ≥ 0 decreases gradually to zero.10 Figure A.2 shows the singular values

for our two empirical applications, illustrating the ill-condition of X in each case, ranging from

the moderate (the Macro application) to the extreme (the Finance application). It is also clear

from the picture, that there is no visible “gap” in the spectrum which is what is explicitly or

9Another popular regularization scheme, least absolute shrinkage and selection (LASSO), is not considered
here as it does not allow for a closed form solution but instead involves a non-trivial numerical optimization
problem. See Mol et al. (2008) for a comprehensive comparative study of ridge and LASSO regression based
forecasts in a univariate setting.

10The case where one or more eigenvalues are literally zero is easily handled by eliminating redundant vari-
ables. However, in many situations, the inclusion of additional predictors simply increases the number of small
eigenvalues.
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implicitly assumed in approximate factor models in order to asymptotically identify the “true”

number of factors (c.f. Chamberlain et al (1987) and Bai and Ng (2002)).

A large condition number is indicative of potential instability in the estimated Θ in the sense

that even a small change in the observed Y in certain directions may lead to a disproportionate

change in the estimated relationship between Y and X. To see this, note that the OLS estimate

is simply

Θ̂OLS =

n∑
i=0

vi
u′iY
σi

= Θ0 +

n∑
i=0

vi
u′ie
σi

(8)

where Θ0 is the true value. Thus a large condition number implies that the OLS estimate,

Θ̂OLS , is disproportionately sensitive to noise components that lie in the space spanned by

the left singular vectors corresponding to the smallest singular values.11 In the context of the

forecasting relationship (1), an ill-conditioned design matrix X therefore in general translates

into a poor out-of-sample performance of the estimated relationship since it usually cannot be

guaranteed that u′ie/σi remains uniformly small (e.g. if errors are Gaussian). In the simple case

of spherical errors, where E[e′e] = κ2Im, it is easy to see that the MSE of the OLS estimator is

E‖Θ̂OLS−Θ0‖2 = κ2 tr{(X′X)−1} = κ2
∑n

i=1 σ
−2
i , thus illustrating the problem of ill-condition.

An effective approach to solving ill-conditioned systems of equations is via regularization of

the equation (8):

Θ̃ =
n∑

i=1

fivi

(
u′iY
σi

)
, ‖Θ̃‖2F =

n∑
i=1

f2
i

(
u′iY
σi

)2

(9)

where the sequence of so called filter factors {fi}ni=1 satisfies that 0 ≤ fi ≤ 1 and decrease

sufficiently fast that fi/σi ≈ 0 for large i. Clearly, in the case of OLS, fi ≡ 1 and the estimator

is un-regularized. Most standard regularization schemes can be expressed via a specific choice

of filter factors and as such can be seen as shrinkage estimators with respect to the rotated

coordinate system determined by the columns of V since ‖Θ̃‖F ≤ ‖Θ̂OLS‖F .
The econometrician wishing to apply regularization techniques is thus faced with the familiar

trade-off between suppressing (possibly spurious) fine features of the data (associated with small

eigenvalues and presumably a high noise-to-signal ratio in finite samples) in return for gaining

robustness. To be precise, let Θ0 denote the true value, Θ̃∞ the limiting value of the shrinkage

estimator as T → ∞, and Θ̃ the finite sample shrinkage estimate. In general Θ̃ → Θ̃∞ 
= Θ0 as

T → ∞ and we have the bound

E‖Θ0 − Θ̃‖︸ ︷︷ ︸
root mean squared

shrinkage estimation error

≤ ‖(Θ0 − Θ̃∞‖︸ ︷︷ ︸
bias due to regularization

+ E‖(Θ̃∞ − Θ̃‖︸ ︷︷ ︸
dampened volatility
due to regularization

(10)

11If all eigenvalues happen to be small (or very large), it of course merely means that the problem is badly
scaled.
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which will tend to compare favorably to OLS when the design matrix is ill-conditioned. The

first term is the (deterministic) bias induced by the regularization term under the null, which

is increasing in the degree of regularization. The second term is increasing as a function of the

noise dispersion but decreasing in the degree of shrinkage due to the dampening effect of the

regularization term, thus creating a trade-off.12

In general, the“optimal” filter factors depend on the unknown “signal-to-noise” ratio, which

follows from

Θ̃−Θ0 =

n∑
i=1

(fi − 1)vi
(
v′iΘ0

)
︸ ︷︷ ︸

Bias

+

n∑
i=1

fivi

(
u′ie
σi

)
︸ ︷︷ ︸
Dampened variance

⇓

E‖Θ̃−Θ0‖2 =

n∑
i=1

(fi − 1)2
(
v′iΘ0Θ

′
0vi

)
+ f2

i

(
u′iE[e′e]ui

σ2
i

)

The infeasible optimal filter factors are uniquely determined and given by

fi =
v′iΘ0Θ

′
0vi

v′iΘ0Θ′
0vi +

u′
iE[e′e]ui

σ2
i

=
“signal”

“signal” + σ−2
i “noise”

(11)

2.2.2. Tikhonov Regularization a.k.a. Ridge Regression

If nothing is known ex-ante about the noise, one may assume that the noise-to-signal ratio

is identical in each direction indicated by the singular vectors of X, and given by a constant ρ2,

which leads to optimal filter factors of the form

fi =
1

1 + ρ2/σ2
i

=
σ2
i

σ2
i + ρ2

(12)

The filter factors (12) correspond to one of the most commonly used regularization techniques,

Tikhonov regularization, which has a natural interpretation as a penalized least squares estima-

tor known as the Ridge Regression estimator:13

min
Θ̃

‖Y −XΘ̃‖2 + ρ2‖Θ̃‖2 , Θ̃ ∈ R
n×m, ρ ≥ 0 (13)

12Note that, in the classical case where n/T → 0, one can let the degree of regularization go to zero at a suitable
rate (to ensure a bias of order op(1/

√
T )), in order to restore asymptotic unbiasedness: Θ̃∞ = Θ0.

13The Tikhonov formulation is usually slightly more general:

min
Θ

‖Y −XΘ‖2 + ρ2‖R′ vec(Θ)‖2 , R ∈ R
p×nm,Θ ∈ R

n×m

but only R = Im ⊗ In is usually considered in statistics. In the case of Bayesian linear regression with a i.i.d.

Gaussian prior, 1/ρ2 =
σ2
prior

σ2
noise

, is the ratio of standard deviation of the noise to the standard deviation of the prior.
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Solving the Lagrangian implies that Θ̃ = (X′X+ ρ2In)
−1X′Y =

∑n
i=1

[
σ2
i

σ2
i +ρ2

]
vi

(
u′
iY
σi

)
. Com-

paring with (12), we see that the Tikhonov scheme is optimal if and only if the signal to noise

ratio is constant for all i and equals 1/ρ2. Clearly, more noisy data implies a larger optimal

ρ which in turn implies greater down weighting of small singular values and leads to a smaller

norm of Θ̃ at the cost of a greater residual norm.

In general, the bias-variance trade-off (10) in the Tikonov case is

Θ̃−Θ0 = −[
In − (SXX + ρ2In)

−1SXX

]︸ ︷︷ ︸
bias

Θ0 + (SXX + ρ2In)
−1SXe︸ ︷︷ ︸

dampened error

where the last term is bounded in squared norm by
∑

(σ2
i + ρ2)−2‖SXe‖2, whereas a (tight)

upper bound on the (squared) norm of the OLS error is much larger at
∑

σ−4
i ‖SXe‖2.

From the penalty term in (13) it is also immediately clear that scaling and rotation of the

problem is not innocuous, e.g. dividing a regressor by 10 will generally result in a different

solution. Care must therefore be taken in appropriate selection and scaling of regressors.

2.2.3. Spectral Truncation Regularization a.k.a. Principal Component Regression (PCR)

If the noise-to-signal ratio is assumed negligible in the directions indicated by the singular

vectors corresponding to the first r singular values (i.e. ρ ≈ 0) but infinite (i.e. ρ ≈ ∞) for the

remaining n− r singular vectors, the optimal filtering scheme sets

f1 = · · · = fr ≡ 1 and fr+1 = · · · = fn ≡ 0 (14)

so than any components of Y orthogonal to the last n− r left singular vectors of X are ignored.

This scheme is known as spectral truncation (because small singular values are zeroed out) or

principal components regression (PCR) because it can be interpreted as a regression in which

X is replaced by its first r singular vectors.14

This type of regularization can be motivated in large panels under the null that X is driven

by an r-dimensional factor structure that is informative for Y :

X = FΛ +E.

and that the largest r eigenvalues of Λ′Λ diverge as n, T grow large.15 Let the singular value

decomposition of X be given by (6)-(7), then the r principal factors are given by F = XVrΣ
−1
r

and it is assumed that only the factors (and not E) have forecasting power for Y.

14Regularization methods like PCR, that restrict attention to components of Y that lie in a subspace of X are
also known as “sub-space” methods in the numerical analysis literature. In engineering and physics, where the
system (1) frequently arises as a (deterministic) discretization of integral equations, the PCR approach has a long
history and is commonly known as Truncated Singular Value (TSVD) or Spectral Cutoff regularization.

15This is the identifying assumption of e.g. Bai&Ng (2002).
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The regularized (via spectral truncation) estimator is obtained by replacing S−1
XX by its

generalized inverse S†
XX = VrΣ

−2
r V ′

r in the expression for the OLS estimator:

Θ̃ = S†
XXSXY = VrΣ

−1
r (SUrY ) (15)

while the PCR estimator is

Θ̃PCR = S−1
FFSFY = SUrY (16)

and we thus have: FΘ̃PCR = X(VrΣ
−1
r )SUrY = XΘ̃, so that the two methods coincide.

The Stock and Watson (1998) DFM5 estimator is an example of PCR (with r = 5) which

we shall consider as our benchmark in our empirical study below.

In general, the bias-variance trade-off (10) in the spectral truncation case is

Θ̃−Θ0 = −
⎡
⎣V diag(

r︷ ︸︸ ︷
0, . . . , 0,

n−r︷ ︸︸ ︷
1, . . . , 1)V ′

⎤
⎦

︸ ︷︷ ︸
bias

Θ0 + V diag(σ−2
1 , . . . , σ−2

r , 0, . . . , 0)V ′ SXe︸ ︷︷ ︸
dampened error

where the last term is bounded in squared norm by
∑

i=1,...,r σ
−4
i ‖SXe‖2, whereas a (tight) upper

bound on the (squared) norm of the OLS error is
∑

i=1,...,n σ
−4
i ‖SXe‖2.

Finally we note that in all PCR techniques, a judiciously chosen pre-scaling of the components

of X is clearly crucial as it will affect both singular values and vectors.

3. Reduced Rank Regression and Shrinkage Estimation

Shrinkage estimation arises as a natural procedure in situations where one wishes to jointly

predict multiple outcomes, Y , and these are driven by a common low dimensional latent factor

structure, F :

Yt+1 = CFt + εt+1 (17)

Xt = ΛFt + ξt (18)

The assumption in (18) is that we have available (a possible large) set of n observable

predictors X driven by r latent factors, Ft. The m × 1 vector of predictable outcomes Yt+1 in

turn is driven by a set of k ≤ r forecasting factors spanned by Ft, i.e. 0 < rank(C) = k ≤ r.

Under these assumptions, equation (18) can be inverted to substitute out for the latent

factors in (17) to yield:

Yt+1 = (CΛ−)Xt + ε̃t+1 (19)

13



where Λ− is a r× n left inverse of Λ. Under the assumptions made above, the matrix (CΛ−) is
a m× n matrix of reduced rank equal to k = rank(C) ≤ r. We denote k, the dimension of the

forecastable component of Y , the model complexity or simply the number of forecasting factors.

From (19) one sees that the multivariate latent factor model naturally yields a reduced rank

regression where the reduced rank equals the dimension of the predictable factor space. This

model is the classical reduced rank regression of Anderson (1963) and Izenman (1975).

Going forward we shall parametrize the loadings matrix in (19) as (CΛ−) = (AB)′ where
A ∈ R

n×k and B ∈ R
m×k. In matrix form we then have

Y = XAB + E and (Â, B̂) = arg min
{A,B}

‖(Y −XAB)W 1/2‖2 (20)

where W is a non-singular weighting matrix. For a given choice of k in (20), the parameters A,B

are chosen jointly to minimize the fitting error of Y and the parameter k controls the degree

of “shrinkage” relative to the OLS estimator. For k ≥ m there is no shrinkage since AB is full

rank and the model is simply OLS. For k < m, on the other hand, the reduced rank condition

imposes discipline on the choice of factors by forcing a few factors to simultaneously fit multiple

components of Y .

For a given choice of weighting matrixW ∈ R
m×m (e.g. a diagonal matrix of inverse variances

in our applications) in (20), the optimal A is found by solving the generalized eigenvalue problem

|SXY WSY X − λSXX | = 0 (21)

and setting A equal to the k eigenvectors belonging to the largest eigenvalues. Thus reduced

rank regression, while a proper shrinkage estimator, remains susceptible to instability when

regressors are nearly collinear (e.g. when n ∼ T ), and cannot be directly applied in a large

panel setting. This serves as our motivation to introduce regularization into the reduced rank

regression framework. Combining the two forms of shrinkage delivers the RRRR models that

are the focus of this paper.

4. Regularized Reduced Rank Regression (RRRR) Models

Combining the two types of shrinkage estimation described in the preceding sections produces

a forecasting model which is robust to near collinearity and at the same time exploits the

covariance structure between X and Y variables. In this section, we focus on the regularization

of reduced rank estimators for a fixed choice of k and defer the discussion of the choice of number

of forecasting factors until Section 7 below.
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RRRR-Spectral:
ρ → ∞

R = [Vr+1, . . . , Vn]
′

PCR-r:
k = min(m, r)

RRRR-Tikhonov:
ρ > 0
R = In

RR:
k = m

RRR:
ρ = 0

OLS:
k = m

RRRR:

min{A,B} ‖Y −XAB‖2 + ρ2‖R(AB)‖2
- Reduced rank: k ≤ m
- Regularization: (ρ,R)

Figure 1: Special cases of the regularization scheme considered in this paper.

4.1. Tikhonov Regularization of Reduced Rank Regression

In the context of the reduced rank regression (20), Tikhonov regularization involves modi-

fying the objective function to include a term that penalizes “large” values of ‖AB‖:

min
{A,B}

‖(Y −XAB)W
1
2 ‖2 + ρ2‖R(AB)W

1
2 ‖2 (22)

where R in general is a q × n matrix which may be chosen to differentially penalize certain

directions in the parameter space.16,17,18 In the special case when R = In,W = Im and k = m,

(22) specializes to

min
{A,B}

‖(Y −XΘ)‖2 + ρ2‖Θ‖2 (23)

This is known as a (multivariate) Ridge Regression in the statistics literature (and denoted RR

in our applications) in which the squared norm of the OLS coefficient is penalized. However,

we stress that in many cases of interest in macroeconomics and finance, k � m and that the

technique is much more general than that. The following Proposition thus generalizes Ridge

Regression to the reduced rank context:

16More generally, the penalty term would be of the form ‖R̃ vec(AB)‖ but to maintain the simple structure of
the problem, we restrict attention to terms of the form R̃ = (W 1/2 ⊗R).

17Note that the weighting matrix is applied to the regularization term in (22) as well since it is natural to scale
the regularization term for the mth equation proportionally to the scaling of the in-sample fitting errors of the
mth equation. This choice also has the benefit of preserving the structure of the problem.

18We note that the issue of missing values (while not discussed explicitly in this paper), in practice should be
handled effectively using an EM type algorithm to iterate on the generalized eigenvalue problem in a manner
similar to Stock and Watson (2011) or the methods described in Troyanskaya et al (2001).
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Proposition 1 (Regularized Reduced Rank Regression). Let W ∈ R
m×m be a symmetric pos-

itive semi definite weighting matrix, then the solution to the weighted regularized reduced rank

regression (22) for a given choice of k, is given by A� = {c1; · · · ; ck} where c1, . . . , ck are the k

eigenvectors corresponding to the k largest eigenvalues, λ1, . . . , λk of the generalized eigenvalue

problem

|SXY WSY X − λ(SXX + ρ2R′R)| = 0 (24)

The most common form of the Tikhonov scheme encountered in practice sets R = In, imply-

ing a down weighting of σ2
i /(σ

2
i +ρ2) of the component of A that lies in the space spanned by the

ith right singular vector of X.19 We also note that (22) can be given a Bayesian interpretation,

albeit in terms of a non-standard prior on the subspace of m× n matrices of reduced rank k.

4.2. Spectral Truncation Regularization of Reduced Rank Regression

Spectral truncation of the Reduced Rank Regression can be seen as a natural extension of the

PCR approach to the reduced rank context which takes into account the correlation structure in

the SXY . In a multivariate PCR framework, the parameter r (the considered number of principal

components of X), plays the double role of both regularizing SXX as well as being the number

of common forecasting factors. In general, not all r factors that are important for explaining the

cross-sectional variation in X need be important for forecasting Y, e.g. when k = rank(C) < r

in (17)-(18). In this case, the econometrician would want to investigate whether a subset of

k ≤ r factors suffice for predicting Y while still using the spectral cutoff r to regularize SXX .

A natural way to think about extending PCR to the reduced rank context is in terms of a

two step procedure: In the first step, r principal factors, F̂, are extracted from the n regressors,

X. Second, a reduced rank regression of Y on F̂ is run to extract k ≤ r forecasting factors. It

turns out that this formulation has an elegant implementation in terms of a penalized one-step

estimator of the form (24) as stated in the following Proposition:

Proposition 2 (Regularized Reduced Rank Regression via Spectral Truncation).

Let the singular value decomposition of X be given by (6)-(7) and let F = XVrΣ
−1
r be the r

principal factors of X. For k ≤ r, if a ∈ R
r×k is the matrix of the k principal eigenvectors of

0 = |SFY WS′
FY − λSFF | (25)

then A = VrΣ
−1
r a ∈ R

n×k spans the eigenspace of the k principal eigenvalues of

0 = |S†
XXSXY WS′

XY − λIn| (26)

19To see this, set M1 = SXX + ρ2In in equation (3)
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where S†
XX = VrΣ

−2
r V ′

r is the regularized (via spectral truncation) inverse of SXX . Moreover,

(26) can be understood as a penalized estimator of the form (24) with R = V ′
n−r and ρ → ∞.

The theorem shows that the two-step approach can be motivated in terms of a limiting

case of a penalized estimator which puts infinite penalty on directions in the parameter space

spanned by the right singular vectors belonging to the n − r smallest singular values, Vn−r.

Thus the formulation (22) is general enough to encompass spectral truncation as an important

limiting special case. The limiting nature of this argument makes the Bayesian interpretation

of the spectral cut-off (and other sub-space methods) somewhat more delicate relative to the

more smooth Tikhonov prior, since they essentially involve an improper prior on the subspace

of Rm×n spanned by the first r right singular vectors, Vr, of X.

More generally, we note that any set of filter factors can be captured by the formulation

(22) since, by setting R = V diag(ρ1, . . . , ρn)V
′ in equation (24), we have the one-to-one corre-

spondance fi = σ2
i /(σ

2
i + ρ2i ) and the interpretation of each ρi is as the penalty applied to the

parameter sub-space spanned by the ith right singular vector of X.

5. Large n, T Asymptotics and Consistency of the Spectral Truncation Scheme

The setup (17)-(18) is standard in the dynamic factor modeling literature. In particular, Bai

and Ng (2002) provide sufficient conditions for consistent identification of the number of factors,

r, and Bai (2003) provides the asymptotic distribution of the estimated factors, Ft = (VrΣ
−1
r )′Xt.

Importantly, Stock and Watson (2002) and Bai and Ng (2006) give rate conditions on n and

T (e.g. n, T → ∞ with n2/T → ∞) such that the first step factor estimate F̂t can be taken

as given in a second stage regression, i.e. the asymptotic distribution of the second stage OLS

coefficients is unaffected, and one is therefore justified in running the reduced rank regression:

Yt+1 = BÃ′F̂t + ε̃t

where Ã ∈ R
r×k and B ∈ R

m×k so that ÃB′ is a r ×m matrix of reduced rank k. From (27) it

is then immediately clear that Ã, B can be consistently estimated as T → ∞ for fixed values of

r,m.

In the standard PCR approach, a consistent estimate of the regularized OLS estimator Θ̃ is

obtained in the second step from the regression

Yt+1 = Θ̃′F̂t + ε̃t

Under an asymptotic normality assumption, one may use a likelihood ratio test for whether Θ̃

has reduced rank k and thus satisfies (27), see e.g. Anderson (1963).
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6. Factor Interpretability and Zero Restrictions

An important criticism of many factor based forecasting models in applied work is the lack

of interpretability of the extracted statistical factors. The problem arises when a single factor

loads on disparate variables (e.g. GDP and exchange rates), rendering economic interpretation

of the linear combination difficult. In this section, we show how to partially alleviate this

shortcoming by requiring the econometrician to ex-ante assign each individual regressor to one

or more groups. The requirement for each group is that variables belonging to the group should

be “alike” in the sense that linear combinations of variables sharing a group membership can be

given economic meaning (e.g. “Real Activity”, “Prices”, and “Interest Rates”). In this section,

we show how factors may be extracted subject to the constraint that each factor loads only on

variables that share a common group membership, so that a factor may be interpreted as e.g. a

“Real Activity” factor. Computationally, this can be achieved by imposing zero restrictions on

the columns of the reduced rank coefficient matrix A:

Proposition 3 (Constrained Regularized Reduced Rank Regression). Consider the penalized

reduced rank regression problem (22) subject to the constraint P ′A = 0 for some P ∈ R
n×f .

Let P⊥ ∈ R
n×(n−f) be a basis for the orthogonal complement of P , then the objective of the

regularized reduced rank regression subject to the orthogonality constraint is:20

min
{a,B}

‖(Y −XP⊥aB)‖2 + ρ2‖RP⊥aB‖2 , s.t. a′P⊥′SXXP⊥a = Ik (27)

where a ∈ R
(n−f)×k and the optimal factors are given by A = P⊥a. For a given choice of k, the

optimal solution is obtained by setting a� equal to the eigenvectors corresponding to the k largest

eigenvalues of the n− f dimensional generalized eigenvalue problem21

|P⊥′SXY S
′
XY P

⊥ − λP⊥′(SXX + ρ2R′R)P⊥| = 0 (29)

Consider a setting with N regressors, each of which can be classified as belonging to one or

more of, say, 4 groups, denoted by {G1, G2, G3, G4}. The goal is to find the principal factor

consisting of only variables from a single group.

20E.g. if P = UDV ′ is the singular value decomposition, then P⊥ can be taken as the last n− f columns of U .
21An alternative approach is to consider penalizing only directions that lie in the admissible space (i.e. satisfying

P ′A = 0), which leads to the eigenvalue problem

|P⊥′SXY S′
XY P⊥ − λ (P⊥′SXXP⊥ + ρ2R′R)| = 0 (28)
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Variable Memberships

1 G1, G2

2 G2, G3, G4

3 G1, G4

4 G3, G4

5 G1, G3, G4

...
...

N G3

⇒ To select “G1”-factor, set P
′
{G⊥

1 } =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 · · · 0

0 0 0 1 0 · · · 0
...

...

0 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

Here the matrix P{G⊥
1 } is a n × g1 matrix, where g1 is the number of variables that are not

members of group G1 and any “group 1 factor” must by definition be orthogonal to P{G⊥
1 }. The

remaining gi × n matrices, P{G⊥
i }, i = 2, . . . , 4 can be similarly defined.

The principal factor is found by solving (28), once for each of the four choices of P ∈
{P{G⊥

1 }, . . . , P{G⊥
4 }}, yielding four candidate factors, one from each group. The principal factor

is then identified as the group factor associated with the largest eigenvalue, i.e. yielding the

greatest explanatory power for Y.

Subsequent factors are extracted iteratively as follows. To compute the j + 1st factor, first

replace Y by the residuals from regressing Y on the preceding j factors and extract the principal

factor as above. This yields the j + 1st factor as the group factor with the most explanatory

power for the component of Y not already explained by the preceding j factors.

Note that a feature of the factors extracted in this fashion is that they are not orthogonal.

This is in many ways natural, as one would not wish to impose that, e.g. “Real Activity” factors

should be orthogonal to “Price” factors. Moreover, even factors from the same group need not

be orthogonal, which is consistent with the fact that there seldom is an economic rationale for

structural economic factors being orthogonal in practice.

7. Data Driven Procedures for Determining the Degree of Regularization and Di-

mension Reduction via Sub-Space Methods

The regularized reduced rank regression introduced in Section 4 requires a choice of the reg-

ularization parameter ρ (or r for sub-space methods) and the forecasting factor space dimension

k (with k ≤ r for sub-space methods). As alluded to earlier, the key challenge in determining a

regularization parameter is the generally unknown properties of the noise that make it difficult

to determine the optimal trade-off in (10). Loosely speaking, the goal is to reduce the influ-

ence of “small” singular values that are prone to be “noisy” without losing potentially valuable

information contained in the regressors.

For the spectral truncation scheme, several data driven approaches to the choice of regular-

ization threshold based on the classic theory of the spectrum of large random matrices with i.i.d.

entries exist. These approaches are appropriate when the regressors, X, can be described by a

“signal+noise” model (17)-(18). The version used in this paper, denoted RRRR-SMP, is based

on the results of Marcenko and Pastur (1967) and Johnstone (2001). In particular the cutoff is
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chosen to equal the 95th percentile of the asymptotic distribution of the largest eigenvalue of an

i.i.d. Gaussian panel with the same limiting ratio n/T .22 Alternatively, the information criteria

of Bai and Ng (2002) could also be applied to consistently pick the number of significant factors

driving X. While it is generally difficult to identify the relevant number of factors in X in finite

samples (especially with weak factors and cross-sectionally correlated errors), RRRR makes it

somewhat easier to overcome any such concerns in the context of forecasting by simply retaining

a few additional principal components in the first regularization step and then relying on rank

reduction in the second step. This helps suppress irrelevant directions, thereby recovering a

forecasting factor space of lower dimension than the possibly mildly inflated number of retained

principal components.23 In our empirical applications we find that such reasonably mild fixed

regularization thresholds (e.g. r = 10 for macroeconomic series and r = 5 for bond returns)

often deliver among the best performing RRRR models.

In the case of the Tikhonov scheme (with R = In), the motivation is the potential lack

of a tight relation between the factors in X and the forecasting factors (e.g. the existence of

weak factors and no formal frequentist scheme for selecting ρ without detailed specification of

the properties of the noise). A commonly used (ad-hoc) technique by practitioners is based on

the cross-validation idea. However, in our setting the implementation of cross validation for

selection of ρ (and in principle k) is complicated by both serial dependence in the data and a

relatively modest sample size in relation to the number of parameters and we do not pursue this

method further in the present paper.24

The simplest way of choosing the number of forecasting factors k is to do this independently

of X based on the factor structure in Y . As discussed above for X, the number of significant

factors in Y can be determined by the information criteria of Bai and Ng (2002) or alternative

criteria stemming from random matrix theory. Furthermore, the degree of correlation with

X can also be taken into account in the choice of k by applying the likelihood ratio test of

Anderson (1958). Finally, numerous Bayesian approaches exist to both the choice of forecasting

factor space dimension k (essentially using Bayesian model selection or alternatively Bayesian

model averaging) and regularization threshold ρ (by applying a hierarchical prior with a hyper-

parameter controlling the precision of the prior on ρ). We leave this for future work, while in our

empirical applications we put initial emphasis on the gains attainable by natural fixed choices of

the number of forecasting factors k and associated spectral cutoff r (k ≤ r), as discussed above.

22See e.g. Patterson, Price, and Reich (2006) and Onatski (2010) among others for a examples of applications
and the theory.

23By contrast, it is not possible to recover any relevant directions that are missed by taking insufficiently many
principal components to fully span the forecasting factor space.

24See e.g. Burman, Chow, and Nolan (1994) and Racine (2000) for a discussion of this issue in the context of
h-block and hv-block cross-validation.
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8. Empirical Applications

We illustrate the empirical performance of the proposed family of regularized reduced rank

regression (RRRR) models, relative to a number of existing alternative models, when applied

to the following standard forecasting problems in macroeconomics and finance: (i) forecasting

a large set of macroeconomic series as in Stock and Watson (2011); (ii) forecasting a small set

of bond excess return series as in Cochrane and Piazzesi (2005) and Cieslak and Povala (2011).

In each application we explicitly account for model parsimony (Occam’s razor) as given by the

number of forecasting factors used for predicting all m outcomes. To facilitate the exposition

we first provide a comprehensive model taxonomy and Monte Carlo study.

8.1. Model taxonomy

The two types of shrinkage employed in our RRRR modeling approach lead to a natural

model taxonomy in terms of number of forecasting factors and regressor components. Our

taxonomy table A.2 summarizes all models considered in the empirical illustrations.

First, Panel A in Table A.2 depicts models based on a fixed number of regressor components

with the r-th row (r = 1, 2, ..., n) and k-th column (k = 1, 2, ...,min(r,m − 1) and k = m)

corresponding to models with r regressor components and k forecasting factors. In particular,

for k = 1, 2, ...,min(r,m− 1) we denote as RRRRk-PCr our regularized reduced rank regression

model with k forecasting factors and r principal components obtained via the fixed spectral

truncation cutoff r in section 4.2 above. As indicated on the main diagonal of the table, for

k = r this is simply equivalent to principal component regression with r factors, denoted PCR-r,

while the bottom right corner of the table corresponding to r = n and k = m represents OLS.

Finally, in the last column of the table, for k = m, we consider alternative methods that do not

impose a smaller common set of forecasting factors across the m outcomes. For r = 1, 2, ..., n−1

these comprise partial least squares with r automatic regressor components denoted as PLS-

r, the three-pass regression filter with r automatic regressor components denoted as 3PRF-r,

as well as a version of ridge regression using spectral truncation with r principle components

denoted as RR-r.25,26

Next, Panel B in Table A.2 presents models relying on data driven regularization of the

regressor components stemming from random matrix theory. In particular, in column k of

the table, for k < m, RRRRk-SMP (row 1) and RRRRk-TMP (row 2) stand for our regular-

ized reduced rank regression model with k forecasting factors in which the number of regressor

components is determined by the 10−3 percentile of the asymptotic distribution of the largest

eigenvalue under the Wishart null in the theory of Marcenko and Pastur (1967) and Johnstone

25Note that RR-r can also be defined as RRRR1-PCr when applied to forecast each outcome univariately in
isolation from the rest of the outcomes rather than jointly.

26The PLS and 3PRF estimators referred to throughout are implemented using the MATLAB code accompa-
nying Kelly and Pruitt (2011b) which also introduces the “automatic” regressor terminology.
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(2001) as illustrated in Figure A.5. We further impose the natural restriction that the chosen

number of regressor components is not smaller than k, which is the minimum number of com-

ponents required to span k forecasting factors of full rank.27 Finally, the last column in Panel

B of the table for k = m displays the corresponding models with no reduction in the number of

forecasting factors, denoted as RR-SMP (row 1) and RR-TMP (row 2), which stand for ridge

regression with the respective data driven regularization approaches.

We rely on the above model taxonomy in our empirical illustrations and compare the fore-

casting performance of various RRRR and RR models to OLS, PCR, PLS and 3PRF as relevant

alternatives. Our primary focus in what follows is on the more interesting set of parsimonious

RRRR models with k << m, which allows us to study the extent to which just a few common

factors may jointly be able to forecast multiple variables of interest.

8.2. Forecasting in Latent Factor Models: A Monte Carlo Study

We investigate the performance of alternative RRRRk-PCr specifications with fixed number

r of regressor components and fixed number of forecasting factors k ≤ r in a factor model

with a spiked population spectrum where spectral truncation, by construction, is the “correct”

regularization technique. This controlled setting allows us to more clearly understand the effect

of regularization thresholds and grouping on forecasting performance. In particular, we simulate

the system:

Yt+1 = C
m×r

Ft + εt+1 , m ≥ r (30)

Xt = Λ
n×r

Ft + ξt , n � r (31)

in the baseline case where the number of forecasting factors is k = rank(C) = 1 and the number

of regressor factors is r = 5, with the r non-zero eigenvalues of ΛΛ′ calibrated to be similar to

the singular values observed in the Stock & Watson (2011) macro data. The predictors X are

split into two groups: a small first group containing 10% of the predictors that are driven by

the strongest two factors in the system, one of which is the forecasting factor relevant for Y ,

and a large second group containing the remaining 90% of the predictors that are driven by the

weakest three of the five latent factors. This setting represents the case of a small informative

group of predictors among many candidate ones. As such, it allows us to assess the ability of

different methods to extract a single relevant forecasting factor hidden in a large set of both

relevant and irrelevant predictors in a case where a one-factor model is optimal under the null.

We simulate twenty different panels with T ∈ {100, 250} observations,m ∈ {5, 25, 50, 100, 250}
outcomes and n ∈ {125, 250} predictors to explore the effects of each of these sample design pa-

rameters on the efficacy of RRRR. For each panel, we carry out 10, 000 independent replications

27The same restriction explains the lower triangular structure in Panel A of Table A.2 for the RRRR models
with a fixed number of regressor components.
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of the model (31) and compare the performance of different grouped and non-grouped RRRR

specifications to the PCR benchmark in terms of the in-sample minimum angle between the

estimated factor space and the true forecasting factor as well as the out-of-sample MSE relative

to the infeasible best forecast.28

Under the null (31), the model has 5 factors in the regressor components such that the optimal

regularization threshold involves keeping the 5 largest principal components and extracting from

these a single forecasting factor, i.e. RRRR1-PC5. This is borne out in Figure A.7 which shows

the relative MSE of various RRRR (Panel (a)) and GRRR models (Panel (b)) as well as PCR,

relative to the infeasible best forecast. When less than 5 regressor components are retained,

Panel (a) shows that all RRRR models as well as PCR suffer dramatically from the omission

of vital information contained in the latent forecasting factor. The minimum MSE is obtained

when exactly 5 regressor components are retained with a gradual deterioration occurring as

more spurious components are included. The deterioration is more evident for PCR which does

not benefit from the second stage reduced rank regression which exploits the m = 5 outcomes

to filter out noisy components. In fact, the most aggressive rank reduction, RRRR1, is clearly

beneficial in this case as there is one true forecasting factor, with a gradual deterioration as

more spurious forecasting factors are included. However, the RRRR models up to order k = 5

are uniformly better than the PCR for each level of regularization (r = 5 and above).29

In Panel (b) of Figure A.7, we see the effect of imposing grouping. Clearly imposing a

grouping structure that correctly brackets the true factor as belonging to one of the groups

provides additional information. This is reflected in uniformly lower MSEs for the grouped

RRRR methods. In particular, even as the number of regressor components increases, the

GRRRR1 estimator is barely affected by the additional noise as the correct group continues to

be selected for the principal factor.

To gain a clearer intuition for these findings, we next analyze in more detail the robustness

of the optimal RRRR models (RRRR1 and GRRRR1) versus PCR in the same setting with one

true forecasting factor. Each of the methods attempt to estimate the true space spanned by

the latent forecasting factor and a natural metric for judging their in-sample efficacy in doing

so is to compare the angle between the true forecasting factor space (which is one dimensional

in this case) and the estimated factor space which is of fixed dimension k for the RRRRk-

PCr/GRRRk-PCr models and of increasing dimension r for the PCR-r models, as the number

of regressor components r increases. In Panel (a) of Figure A.8 we see that going from r = 1

to r = 5 as expected leads to a dramatic reduction in the minimum angle, indicating that

all methods improve their ability to capture the true forecasting factor space. However, the

RRRR1/GRRRR1 methods do so while preserving the one-dimensional nature of the estimated

28For 3PRF/PLS we limit the number of replications to 1, 000 due to the considerably larger computational
burden of these methods.

29RRRR with any suitable data driven method for choosing k in the range from 1 to 5 therefore also performs
better than PCR.
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factor space, while PCR requires a 5-dimensional space. For r = 5, the parsimonious one-

dimensional space estimated by RRRR1 is only slightly worse in terms of minimal angle than

for PCR5 while GRRRR1 does slightly better due to a group specification consistent with the

true factor structure. As r increases, the angle for PCR mechanically drops as the dimension

of the factor space increases. For RRRR1, there is a slight deterioration as the one-dimensional

space gets contaminated by noise, which the second step reduced rank regression only partially

is able to filter out. The GRRRR1 on the other hand is barely affected since the principal factor

continues to be selected from the correct group. A similar pattern is seen in the out-of-sample

forecasting performance in Panel (a) of Figure A.9, where GRRRR1 clearly dominates, followed

by RRRR1 which benefits from its parsimony compared to PCR, despite the larger in-sample

minimal angle between the estimated and true factor space.

As the number of outcomes,m, increases, Panel (b) of Figures A.8 and A.9 show that RRRR1

improves markedly due to the increased ability of the second step reduced rank regression to

identify the forecasting component contained in the noisy regressor components. GRRRR1 on

the other hand exhibits a minimal added benefit since the imposed group structure already

reduces the noise in the admissible factor space, even for small m.

Increasing the number of regressors has a beneficial impact on RRRR1 and PCR, as shown

in Panel (b) of Figure A.10. However, the impact is limited for PCR as is to be expected based

on the results of Bai and Ng (2002) as the ability to identify the true regressor components in

the first step depends on min(n, T ) and n > T holds already in our baseline case. However, the

GRRRR1 does benefit substantially, as the larger n tends to increase min(ni, T ) where ni is the

number of regressors that belongs to group i. The improvement for RRRR1 is much smaller as

is to be expected. The in-sample ability to better estimate the forecasting factor space is also

reflected in the out-of-sample MSEs in Figure A.11. Moreover, the parsimony of RRRR1 and

GRRRR1 is beneficial in out-of-sample forecasting and leads to uniformly better performance

compared to PCR.

Finally we consider the effect of increasing T in Figures A.12 and A.13. All methods improve

their ability to correctly identify the forecasting factor space, with RRRR1 seeing the largest

benefit in its ability to filter out noise in the second step reduced rank regression. For GRRRR1

the benefit is smaller as the group structure already provides substantial ability to filter out

noise. For all methods, the increase in min(n, T ) is modest, so that the improvement in the

ability to identify regressor components is limited, as reflected in an almost unchanged PCR

performance.

The robustness of RRRR to an incorrectly specified number of forecasting factors k and

number of regressor components r in our Monte Carlo study suggests a simple recipe when the

true model is unknown: one can apply a suitable set of reduced rank regressions (rather than

linear regression) to some chosen principal components of the regressors. Moreover, we see a

potentially substantial benefit from correctly imposing a group structure on the problem, with
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the added benefit of interpretability of the resulting factors. This allows the econometrician

to ex-ante impose some discipline on the statistical factor extraction problem dictated by eco-

nomic theory. However, we stress that “incorrect” grouping may lead to a substantial loss of

performance, and thus the grouping of regressors must be carried out carefully. Our empirical

illustrations on real data further demonstrate the effectiveness of applying reduced rank rather

than linear regression to the principal components of the available regressors.

8.3. Forecasting macroeconomic series

In our first empirical illustration we consider the 35 aggregate and 108 disaggregate quarterly

U.S. macroeconomic series analyzed by Stock and Watson (2011), with a total of 195 quarterly

observations from 1960:Q2 through 2008:Q4. After transforming and categorizing each series,

we produce rolling out-of-sample one-step-ahead forecasts with rolling window size 100 quarters

for various models in our taxonomy table A.2.30 Following Stock and Watson (2011), we report

distributions of relative RMSE by forecasting method relative to the PCR-5 benchmark. Ta-

ble A.3 summarizes the results when forecasting the entire set of 143 macroeconomic variables

univariately without imposing a common factor structure as in Stock and Watson (2011), while

Table A.4 contains results for the more interesting case when forecasting the subset of 35 aggre-

gate macroeconomic variables by imposing common forecasting factors. The predictors in both

cases comprise the subset of 108 disaggregate macroeconomic series. The tables present both

percentiles and empirical probabilities for intervals chosen to highlight any substantial down-

ward/upward deviations from a ratio equal to 1, indicating better/worse performance relative

to the PCR-5 benchmark.

As a natural starting point, Table A.3, Panel A reports results for the AR-4 and PCR-

50 “naive” benchmark models considered also by Stock and Watson (2011). In particular,

the obtained percentiles coincide with those reported by Stock and Watson (2011) for the same

“naive” models.31 Such exact match allows for meaningful comparison between the performance

of the rest of the models we present in Table A.3, Panels B, C, D, E to the performance of the

other shrinkage models considered by Stock and Watson (2011) but not implemented here.32

Overall, our findings are in line with the main conclusion in Stock and Watson (2011), that

PCR-5 is hard to outperform consistently across all 143 series. Moreover, any improvement in

the left tail of the distribution is more than offset by a deterioration in the right tail, keeping the

median roughly equal to 1 at best. The only notable competitor to PCR-5 appears to be our RR-

SMP model exploiting the random matrix theory Marcenko and Pastur (1967) and Johnstone

(2001). As evident from the first row in Panel C of Table A.3, RR-SMP attains a slightly better

left tail without any significant distortion in the right tail. A closer look at the distribution

of the spectral truncation cutoff implied by our MP (data driven) method reveals that it has

30We thank Mark Watson for making the Gauss programs for replicating Stock and Watson (2011) available.
31See table 5, panel (a) in Stock and Watson (2011) in whose notation PCR-50 is denoted as OLS.
32See again table 5, panel (a) in Stock and Watson (2011).
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a median of 5 and varies only mildly from 3 to 8 across different series and time windows.

This provides a compelling rationale for why PCR-5 emerges as a hard to beat benchmark in

Stock and Watson (2011), leaving only modest room for improvement by suitable data driven

procedures for determining the degree of regularization. As such, our RR-SMP model appears

to be the only viable competitor to PCR-5 in terms of overall performance across all macro

series among the shrinkage methods considered in this paper and in Stock and Watson (2011),

as well as the recently proposed 3PRF models and its closely related PLS counterparts. We

attribute the success of RR-SMP to the reasonably good finite sample validity of our random

matrix theory results for the considered macroeconomic series.

We next consider the more restricted problem of jointly forecasting all 35 aggregate macroe-

conomic series with a common smaller set of factors extracted from the 108 disaggregate series.

Table A.4 presents results for the distribution of RMSE relative to the PCR-5 benchmark for

models grouped by number of forecasting factors set to 1 (panel A), 3 (Panel B), 5 (Panel C), 7

(Panel D), and 35 (Panel E). It is quite striking to observe that now a viable competitor to PCR-

5 is delivered by RRRR5-SMP, performing essentially on par with RR-SMP and outperforming

3PRF and PLS, none of which imposes common factor structure. Moreover, RRRR5-PC10,

which utilizes a slightly less aggressive fixed regularization choice of 10 principal components

compared to the data driven SMP regularization choice, emerges as perhaps the best performing

model overall. Thus, as long as a sensible data driven or fixed regularization threshold choice

is invoked, our approach to combine the two types of shrinkage in a way that disentangles the

degree of regularization of the predictors from the number of factors that explain the outcomes

offers a viable parsimonious alternative to PCR-5. Given that in terms of forecasting perfor-

mance our RRRR models with 5 forecasting factors are not dominated by any RRRR models

with fewer forecasting factors, our results strengthen the findings in Stock and Watson (2011)

regarding the dimensionality of the forecasting factor space, while offering a superior technique

for extracting the five-dimensional space of interest in comparison to PCR-5. This finding should

be of great interest to empirical macro economists in the construction of VAR models.

It is interesting to observe also that there appears to be marked difference in the out-of-sample

forecasting performance of the spectral (SMP) and Tikhonov (TMP) regularization schemes in

the considered data driven versions of our RRRR and RR models. The distribution of relative

RMSE vis-a-vis the PCR-5 benchmark reported in tables A.3 and A.4 reveals that overall, across

the considered large set of macroeconomic series, spectral truncation is generally more preferable

than Tikhonov regularization. In this regard, our results can be related to Mol et al. (2008)

who use ridge regression with Tikhonov regularization in a Bayesian framework to forecast

industrial production and inflation and provide a set of comparisons indicating that different

PCR benchmarks (and PCR-5 in particular) are hard to beat in terms of relative RMSE using

ridge regression. Using the much larger set of macroeconomic series studied by Stock and Watson

(2011), we find that a similar result holds for our data-driven RR-TMP and RRRR-TMP models
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relying on Tikhonov regularization. By contrast, the spectral truncation regularization that we

utilize in our RR-SMP and RRRR-SMP models appears to offer a viable data-driven alternative

to the PCR-5 benchmark.

Finally, simple grouping of the available predictors into two disjoint groups of macro and

financial variables in accordance with the categorization by Stock and Watson (2011) allows us

to shed light on the economic interpretation of the extracted forecasting factors as revealed by

RRRR with the corresponding variable grouping constraints. In particular, we find that while

such coarse grouping of the variables does not lead to much improvement or deterioration of

the best performing RRRR5-PC10 model, it reveals that the strongest among the extracted five

forecasting factors is always composed of macro variables, while the financial variables never

account for more than two of the extracted five forecasting factors and deliver the weakest fac-

tor more than 60% of the time. Thus, our RRRR model provides a first look at the relative

importance of macro versus financial factors for jointly forecasting all 35 aggregate macroeco-

nomic series. More detailed analysis of the economic factor dynamics and composition implied

by grouped RRRR is the subject of an ongoing study.

8.4. Forecasting bond excess returns

There are numerous examples in the finance literature where it is natural to think that a

small number of forecasting factors drive multiple outcomes and hence our RRRR models are

a particularly relevant forecasting approach. As an illustration we consider forecasting bond

excess returns, known to be largely driven by a single common forecasting factor constructed

differently by Cochrane and Piazzesi (2005) from forward rates and more recently by Cieslak

and Povala (2011) from maturity-related inflation cycles. For the period 1972-2010 we produce

rolling out-of-sample forecasts with rolling window size 120 months for five different sets of

predictors: (i) cycles (table A.5); (ii) forwards (table A.6); (iii) forward slopes (table A.7);

(iv) yield curve slopes (table A.8); (v) the union of cycles and yield curve slopes (table A.9).33

Although there are only about 15 predictors, the design matrix, X, is extremely ill-conditioned

as shown in Figure A.2, thus necessitating the use of regularization.

For each set of predictors constructed from zero-coupon bonds with maturities from 1 to 15

years we forecast monthly bond excess returns for maturities ranging from 2 to 15 years and

report out-of-sample R2 by forecasting method relative to a rolling average benchmark. Our

data source is the commonly used Gürkaynak, Sack, and Wright (2006) set of zero coupon yields

(GSW), maintained and made publicly available by the Federal Reserve Board. As noted by

Gürkaynak et al. (2006), the short end of the yield curve for maturities below 1 year is not

reliably interpolated. Therefore, we construct forwards and cycles without utilizing GSW data

for maturities shorter than 1 year, while in our set of yield curve slopes we instead opt to include

the 1-month and 3-month T-bill rate from the CRSP Fama Risk-Free Rates Database.34 The

33Results for other possible combinations of predictors are available upon request.
34Note that the corresponding monthly forward rates still cannot be constructed without interpolation.
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1-month T-bill rate plays the role of the risk free rate that we use to construct monthly bond

excess returns. Thus, the part of our empirical analysis based on forwards, forward slopes, and

cycles complements Cochrane and Piazzesi (2005) and Cieslak and Povala (2011) by considering

non-overlapping monthly bond excess returns in a rolling out-of-sample forecast exercise rather

than in-sample analysis of 12-month overlapping bond excess returns. Moreover, using our

RRRR methods we document non-trivial predictive power of the yield curve slopes (even more

so when combined with cycles) for the monthly non-overlapping excess returns in our sample.

Our main findings from the bond data analysis can be summarized as follows. First, our

regularized reduced rank regression models imposing common forecasting factors are always

among the best performing models for each set of predictors. Second, we document that the

predictive power of yield curve slopes (table A.8) is as strong as the predictive power of cycles

(table A.5), while forward slopes (table A.7) and forwards (table A.6) in particular have markedly

lower predictive power. Third, and most important of all, we document that combining yield

curve slopes and cycles as predictors almost doubles the out-of-sample predictive power of the

regressions for the longest maturities and our RRRR1-PC5 regularized reduced rank regression

model clearly outperforms the rest of the methods in this case (table A.9), while RRRR1-

SMP remains a close competitor among the data-driven methods for choosing the degree of

regularization. Overall, our results make a strong case for using our regularized reduced rank

models for forecasting bond excess returns which enable the extraction of predictive information

from the combination of multiple (possibly extremely ill-conditioned) predictor sets.

Comparing the spectral (SMP) and Tikhonov (TMP) regularization schemes across the

macro and bond applications, it can be observed that no one scheme uniformly dominates in

terms of forecasting performance. Instead the appropriate choice appears to depend on the spec-

tral properties of the data and (likely) the panel size. In particular, in the macro data (large

n), eigenvalues tend to be relatively closely spaced around the MP cutoff and SMP clearly

out-performs TMP. Comparing the filter factors (c.f. Figures A.3-A.4), the Tikhonov scheme

assigns non-trivial weight to a great many (possibly noisy) eigenvalues while the spectral trunca-

tion scheme leads to a much simpler factor structure of the regularized regressors. By contrast,

TMP outperforms SMP in the bond data applications (small n), where the spacing of eigenval-

ues around the MP cut-off tends to be sparse leading the SMP scheme to pick just 1 or 2 factors.

One possible interpretation of the performance of TMP relative to SMP is therefore that a few of

the eigenvalues just below the MP threshold (which would receive positive weight under TMP)

contain valuable predictive information. This is consistent with the observed good performance

of the less conservative fixed truncation rules such as RRRR1-PC5 in the case of the combined

yield slopes and cycles predictor set. Moreover, it parallels also the observed superior perfor-

mance in our macro application of the less conservative fixed truncation rule RRRR5-PC10 in

comparison to its data-driven counterpart RRRR5-SMP (see also related discussion in section

7 above).
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9. Conclusion

We have proposed the Regularized Reduced Rank Regression (RRRR) forecasting model as

a robust method for jointly forecasting multiple outcomes in situations with many predictors

or nearly collinear predictors. The RRRR model combines two distinct types of shrinkage

estimation (in terms of the singular values of SXX and the canonical correlations) and can be

derived from a penalized reduced rank regression model as the solution to a standard generalized

eigenvalue problem. Analogous to the ridge regression, the penalized RRRR estimate has a

Bayesian interpretation in terms of a precision prior on the regression slopes, albeit a non-

standard one. Moreover, in a purely frequentist setting, we have shown how to motivate the

choice of regularization scheme in terms of assumptions about the signal-to-noise ratio of certain

dimensions of the data. In the case of spectral truncation regularization, one may also appeal to

the existing literature on using random matrix theory for noise filtering in the large n, T limit.

A key advantage of RRRR models over existing univariate techniques is the extraction of

common predictive factors that jointly forecast the outcomes of interest. This is particularly

pertinent whenY itself contains a strong factor structure that is (partly) forecastable. Compared

to principal component regression (PCR), RRRR often produces a more parsimonious forecasting

model whenever some important factors in X are irrelevant for forecasting Y, as clearly seen in

our application to forecasting bond excess returns.

In effect, as an important special case, our RRRR approach generalizes principal component

regression by applying reduced rank rather than linear regression to the principal components

of the regressors, thereby disentangling the forecasting factors driving the outcomes from the

factor structure in the predictors. Moreover, the computational burden is no greater than PCR

for large n, T and, in our empirical investigation, there seems to be limited (if any) downside to

applying a reduced rank rather than linear regression in the second step of a principal component

regression analysis.

While factor models provide a convenient solution to the curse of dimensionality faced by

variable selection methods, a common concern is the lack of interpretability of purely “statistical”

factors. We show how to alleviate this problem when the econometrician is able to assign

(possibly non-exclusive) “group”-memberships to individual variables (for example, as dictated

by economic theory). In this case, a set of linear restrictions can be imposed on the factor

extraction problem to ensure that each factor involves only variables that share a common

group characteristic, thereby enforcing interpretability of the factors extracted via RRRR.

In our applications to out-of-sample forecasting of macro economic time series and bond

excess returns, we find that the regularized reduced rank regression (RRRR) models are robust

and offer an attractive alternative to principal component regression (PCR). In particular, they

deliver more parsimonious (lower dimensional) forecasting models than competing methods when

jointly predicting multiple outcomes that share a common factor structure. In the case of jointly

forecasting macro economic aggregates, while strengthening the empirical evidence in favor of
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a five-dimensional forecasting factor space, we find that a five factor model extracted from

ten principal components via RRRR5-PC10 outperforms the popular five-factor benchmark

extracted via PCR-5 by Stock and Watson (2011). Furthermore, by subjecting the extracted

factors to load on one of two disjoint groups of macro and financial variables among the available

predictors, our RRRR model provides a first look at the relative importance of macro versus

financial factors for jointly forecasting all 35 aggregate macroeconomic series. In the case of

forecasting bond excess returns, we find that a single factor model extracted from five principal

components via RRRR1-PC5 can almost double the predictability of one-month bond excess

returns across a wide maturity range by using a set of predictors combining yield slopes and

the maturity related cycles of Cieslak and Povala (2011). However, we stress that no one

model appears to be uniformly best in terms of out-of-sample performance across datasets and

subsamples.
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Appendix A. Figures and Tables
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Figure A.2: The singular values of the Stock and Watson (2011) macro data and the four sets
of bond excess return predictors considered: The Cieslak and Povala (2011) inflation cycles, the
Forward rates, Forward slopes (with respect to the 1 month rate), the current yield slopes (with
respect to the 1 month rate). The macro data contains 108 individual time series while the bond
excess return predictors consist of 15 series each (corresponding to maturities of 1 through 15 years).
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Figure A.3: The filter factors fi as a function of the size of the singular value σi of the Stock
and Watson (2011) macro data for the two regularization schemes considered. In each case the
regularization parameter is set to ρ = σ10, the tenth largest singular value.
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Figure A.4: The filtered reciprocal singular values of the Stock and Watson (2011) dataset of 108
macroeconomic variables. The spectral truncation filter works by setting all singular values of X
that fall below a given cut-off level to zero while the Tikhonov scheme down weights small singular
values. In each case the regularization parameter is set to ρ = σ10, the tenth largest singular value.
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Figure A.5: The limiting Tracy-Widom distribution corresponding to the first β-ensemble (Gaus-
sian Orthogonal Ensemble, c.f. Johnstone (2001)), for the normalized largest eigenvalue of the noise
covariance matrix. The TW1 distribution function is not known in closed form but given by
TW1(s) = exp

{− 1
2

∫∞
s

q(x) dx
}
, where q(·) satisfies the Painleve type II equations: q′′ = xq + 2q3

with boundary condition limx→∞[q(x)−Ai(x)] = 0 and Ai(·) is the Airy function. The solution can
be found numerically to any desired accuracy using an ODE solver.
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Figure A.6: Eigenvalues of the Stock and Watson (2011) SXX matrix. In each panel the red
curve shows the asymptotic distribution of the eigenvalues of the covariance matrix of a panel of i.i.d.
N(0,1) random variables with N/T = 108/198 as in the Stock and Watson (2011) dataset. Panel
a: The empirical distribution of the 108 eigenvalues of the SXX matrix. Panel (b): The eigenvalue
distribution of SXX after applying an AR(12) filter to eliminate the effect of autocorrelation in the
data while preserving the cross-sectional dependence. Panel (c): The eigenvalue distribution of
SXX for 10,000 resampled versions of the data in which the observation time indices have been
scrambled independently for each series to eliminate the effect of both autocorrelation and cross-
sectional dependence in the data.
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Figure A.7: Relative MSE plots with and without variable grouping constraints for
RRRR factor interpretability in Monte Carlo datasets. In each panel we plot relative MSE
as a function of number of regressor components for competing methods described in the text and our
model taxonomy table A.2 and Monte Carlo datasets obtained as described in section 8.2 with sample
size T = 100 observations, m = 5 outcomes, and n = 125 predictors. Panel (a): Unconstrained
RRRR. Panel (b): RRRR with variable grouping constraints for factor interpretability.
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Figure A.8: Plot of minimal angles to the forecasting factor space for small versus large
number m of outcomes Y in Monte Carlo datasets. In each panel we plot computed minimal
angles to the forecasting factor space as a function of number of regressor components for competing
methods described in the text and our model taxonomy table A.2 and Monte Carlo datasets obtained
as described in section 8.2. Panel (a): Monte Carlo dataset of size T = 100 observations, m = 5
outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset of size T = 100 observations,
m = 50 outcomes, and n = 125 predictors.
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Figure A.9: Relative MSE plots for small versus large number m of outcomes Y in
Monte Carlo datasets. In each panel we plot relative MSE as a function of number of regressor
components for competing methods described in the text and our model taxonomy table A.2 and
Monte Carlo datasets obtained as described in section 8.2. Panel (a): Monte Carlo dataset of size
T = 100 observations, m = 5 outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset
of size T = 100 observations, m = 50 outcomes, and n = 125 predictors.
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Figure A.10: Plot of minimal angles to the forecasting factor space for small versus
large number n of predictors X in Monte Carlo datasets. In each panel we plot computed
minimal angles to the forecasting factor space as a function of number of regressor components
for competing methods described in the text and our model taxonomy table A.2 and Monte Carlo
datasets obtained as described in section 8.2. Panel (a): Monte Carlo dataset of size T = 100
observations, m = 5 outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset of size
T = 100 observations, m = 5 outcomes, and n = 250 predictors.
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Figure A.11: Relative MSE plots for small versus large number n of predictors X in
Monte Carlo datasets. In each panel we plot relative MSE as a function of number of regressor
components for competing methods described in the text and our model taxonomy table A.2 and
Monte Carlo datasets obtained as described in section 8.2. Panel (a): Monte Carlo dataset of size
T = 100 observations, m = 5 outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset
of size T = 100 observations, m = 5 outcomes, and n = 250 predictors.
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Figure A.12: Plot of minimal angles to the forecasting factor space for small versus large
sample size T in Monte Carlo datasets. In each panel we plot computed minimal angles to
the forecasting factor space as a function of number of regressor components for competing methods
described in the text and our model taxonomy table A.2 and Monte Carlo datasets obtained as
described in section 8.2. Panel (a): Monte Carlo dataset of size T = 100 observations, m = 5
outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset of size T = 250 observations,
m = 5 outcomes, and n = 125 predictors.
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Figure A.13: Relative MSE plots for small versus large sample size T in Monte Carlo
datasets. In each panel we plot relative MSE as a function of number of regressor components
for competing methods described in the text and our model taxonomy table A.2 and Monte Carlo
datasets obtained as described in section 8.2. Panel (a): Monte Carlo dataset of size T = 100
observations, m = 5 outcomes, and n = 125 predictors. Panel (b): Monte Carlo dataset of size
T = 250 observations, m = 5 outcomes, and n = 125 predictors.
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Table A.2: Taxonomy of forecasting models. We present a taxonomy of forecasting models
for any number of forecasting factors 1, 2, ...,M and any number of regressor components 1, 2, ..., N .
Panel A presents methods based on a fixed number of regressor components. Panel B presents
methods based on a data driven number of regressor components.

# Regressor Components 1 2 3 4 5 … m

Panel A: Fixed Number of Regressor Components

1 PCR 1
RR PC1
PLS 1
3PRF 1

2 RRRR1 PC2 PCR 2
RR PC2
PLS 2
3PRF 2

3 RRRR1 PC3 RRRR2 PC3 PCR 3
RR PC3
PLS 3
3PRF 3

4 RRRR1 PC4 RRRR2 PC4 RRRR3 PC4 PCR 4
RR PC4
PLS 4
3PRF 4

5 RRRR1 PC5 RRRR2 PC5 RRRR3 PC5 RRRR4 PC5 PCR 5
RR PC5
PLS 5
3PRF 5

… … … … … … … …

n RRRR1 PCn RRRR2 PCn RRRR3 PCn RRRR4 PCn RRRR5 PCn … OLS

Panel B: Data Driven Number of Regressor Components

MP MAX
Spectral

RRRR1 SMP RRRR2 SMP RRRR3 SMP RRRR4 SMP RRRR5 SMP … RR SMP

MPMAX
Tikhonov

RRRR1 TMP RRRR2 TMP RRRR3 TMP RRRR4 TMP RRRR5 TMP … RR TMP

# Forecasting Factors
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Table A.3: Distributions of relative RMSE by forecasting method for a set of 143
macroeconomic variables from Stock & Watson (2011). For rolling out-of-sample forecasts
with rolling window size 100 quarters we report quantiles (left half of the table) and relative frequen-
cies (right half of the table) of the empirical distributions of RMSE relative to PCR-5 by forecasting
method for the set of 143 macroeconomic variables in Stock & Watson (2011). The predictors com-
prise 108 non-aggregate macroeconomic variables transformed in accordance with Stock & Watson
(2011). Panel A represents replication check of the results for two naive benchmark models found
also in Stock & Watson (2011). Panels B, C, D, and E present results for a number of competing
methods described in the text and our model taxonomy table A.2.

Relative RMSE to PCR 5

Models 5 25 50 75 95 <0.90 0.90 0.97 0.97 1.03 1.03 1.10 >1.10

Percentiles Empirical Distribution
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Table A.4: Distributions of relative RMSE by forecasting method for a set of 35 aggre-
gate macroeconomic variables from Stock & Watson (2011). For rolling out-of-sample
forecasts with rolling window size 100 quarters we report quantiles (left half of the table) and rel-
ative frequencies (right half of the table) of the empirical distributions of RMSE relative to PCR-5
by forecasting method for the subset of 35 aggregate macroeconomic variables in Stock & Watson
(2011). The predictors comprise the remaining 108 non-aggregate macroeconomic variables. Panels
A, B, C and D present results for models with, respectively, 1, 3, 5 and 7 forecasting factors. Panel
E presents results for models that do not impose common forecasting factor structure across the 35
macroeconomic aggregates. Description of the models can be found in the text and in our model
taxonomy table A.2.

Relative RMSE to PCR 5

Models 5 25 50 75 95 <0.90 0.90 0.97 0.97 1.03 1.03 1.10 >1.10

Percentiles Empirical Distribution
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Table A.5: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by the maturity-related cycles of Cieslak & Povala (2011). For rolling out-
of-sample forecasts with rolling window size 120 months we report out-of-sample R2 by forecasting
method relative to a rolling average benchmark. We forecast monthly excess returns of bonds ranging
from 2 to 15 years of maturity. The risk-free rate is taken to be the 1-month T-bill rate from the
CRSP Fama Risk-Free Rates Database. The set of predictors includes the maturity-related cycles of
Cieslak & Povala (2011) for GSW yields from 1 to 15 years. The sample period is 1972-2010. Panel
A presents results for commonly used simple benchmark models. Panels B and C present results
for competing models with, respectively, 1 and 2 forecasting factors. Panel D presents results for
models that do not impose common forecasting factor structure across the 14 bond excess return
series. Description of the models can be found in the text and in our model taxonomy table A.2.

Out of sample R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Bond Excess Returns
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Table A.6: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by forward rates. For rolling out-of-sample forecasts with rolling window size 120
months we report out-of-sample R2 by forecasting method relative to a rolling average benchmark.
We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity. The risk-free
rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates Database. The set
of predictors includes the GSW forward rates for maturities from 1 to 15 years. The sample period is
1972-2010. Panel A presents results for commonly used simple benchmark models. Panels B and C
present results for competing models with, respectively, 1 and 2 forecasting factors. Panel D presents
results for models that do not impose common forecasting factor structure across the 14 bond excess
return series. Description of the models can be found in the text and in our model taxonomy table
A.2.

Out of sample R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Bond Excess Returns
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Table A.7: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by forward slopes. For rolling out-of-sample forecasts with rolling window size 120
months we report out-of-sample R2 by forecasting method relative to a rolling average benchmark.
We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity. The risk-free
rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates Database. The
set of predictors includes the GSW forward slopes for maturities from 1 to 15 years. The sample
period is 1972-2010. Panel A presents results for commonly used simple benchmark models. Panels
B and C present results for competing models with, respectively, 1 and 2 forecasting factors. Panel
D presents results for models that do not impose common forecasting factor structure across the
14 bond excess return series. Description of the models can be found in the text and in our model
taxonomy table A.2.

Out of sample R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Bond Excess Returns
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Table A.8: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by yield curve slopes. For rolling out-of-sample forecasts with rolling window
size 120 months we report out-of-sample R2 by forecasting method relative to a rolling average
benchmark. We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity.
The risk-free rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates
Database. The set of predictors includes the yield curve slopes for the 1-month and 3-month T-bill
rates from the CRSP Fama Risk-Free Rates Database and the GSW yields for maturities from 1
to 15 years. The sample period is 1972-2010. Panel A presents results for commonly used simple
benchmark models. Panels B and C present results for competing models with, respectively, 1 and
2 forecasting factors. Panel D presents results for models that do not impose common forecasting
factor structure across the 14 bond excess return series. Description of the models can be found in
the text and in our model taxonomy table A.2.

Out of sample R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Bond Excess Returns
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Table A.9: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by the combined set of yield curve slopes and corresponding maturity-related
cycles of Cieslak & Povala (2011). For rolling out-of-sample forecasts with rolling window
size 120 months we report out-of-sample R2 by forecasting method relative to a rolling average
benchmark. We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity.
The risk-free rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates
Database. The set of predictors is given by the yield curve slopes for the 1-month and 3-month
T-bill rates from the CRSP Fama Risk-Free Rates Database and the GSW yields for maturities
from 1 to 15 years in combination with the maturity-related cycles of Cieslak & Povala (2011) for
GSW yields from 1 to 15 years. The sample period is 1972-2010. Panel A presents results for
commonly used simple benchmark models. Panels B and C present results for competing models
with, respectively, 1 and 2 forecasting factors. Panel D presents results for models that do not
impose common forecasting factor structure across the 14 bond excess return series. Description of
the models can be found in the text and in our model taxonomy table A.2.

Out of sample R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Bond Excess Returns
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Appendix B. Proofs

Appendix B.1. Proofs of RRRR results

Lemma 1. Let Γ,Λ be positive semidefinite n× n matrices and Λ be invertible, then

A� = arg max
{A∈Rn×k:A′ΛA=Ik×k}

tr{A′ΓA (A′ΛA)−1} (B.1)

is given by the k eigenvectors belonging to the k largest eigenvalues from the generalized eigenvalue problem

|Γ− λΛ| = 0 (B.2)

Proof. Follows from the fact that if (λi, ci) is an eigenvalue-eigenvector pair of (B.2), then λiΛci = Γci,

and C = (c1, . . . , cn) is a basis for Rn where for i 
= j, c′iΛcj = 0. The first order condition with respect

to A in (B.1) yields

[(A′ΓA)(A′ΛA)−1]A′Λ = A′Γ

Note that the term in brackets above is simply our objective whose trace we wish to maximize. Since the

trace operator only involves the diagonal elements, the proof now proceeds by induction. Suppose k = 1,

then the term in square brackets above is a scalar, and clearly is maximized when A is the eigenvector

associated with the largest eigenvalue of (B.2). Next, given the first k− 1 columns of A, it is now trivial

to see that the objective is maximized by setting the kth column equal to the eigenvector belonging to

the kth largest eigenvalue.

Proof of Proposition 1. The optimal A solves

min
A

tr{W 1/2SY Y W
1/2 −W 1/2SY XA(A′[SXX − ρ2R′R]A)−1A′SXY W

1/2}
= max

A
tr{A′SXY WSY XA[A′(SXX − ρ2R′R]A)−1}

The statement of the proposition now follows from Lemma 1 with Γ = SXY WSY X and Λ = SXX −
ρ2R′R.

Proof of Proposition 2. Let the singular value decomposition of X be given by (6)-(7), then the

principal components of X are given by F = XVrΣ
−1
r . The optimal loadings on F in the two-step

approach are given by the matrix a ∈ R
r×k consisting of the k principal eigenvectors of

0 = |SFY S
′
FY − λSFF | ⇒ 0 = |SUrY S

′
UrY − λIr| (B.3)

and the resulting loading on X is therefore given by Ã = VrΣ
−1
r a.

The regularized (via spectral truncation) reduced rank factor loadings, A, solve the generalized eigen-

value problem

0 = |VrΣ
−2
r V ′

rSXY S
′
XY − λIn| ⇒ 0 = |VrΣ

−1
r SUrY [S

′
UrY ΣrV

′
r + S′

Un−rY Σn−rV
′
n−r]− λIn| (B.4)

To see if the two solutions are identical, we take an eigenvalue-eigenvector pair (λi, ai) of (B.3) and check
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whether Ãi = VrΣ
−1
r ai is an eigenvalue of (B.4) corresponding to the eigenvalue λi:

VrΣ
−1
r SUrY [S

′
UrY ΣrV

′
r + S′

Un−rY Σn−rV
′
n−r]Ãi = VrΣ

−1
r SUrY [S

′
UrY ΣrV

′
r + SUn−rY ai (B.5)

= λiVrΣ
−1
r ai = λiÃi (B.6)

where the last equality follows from the fact that (λi, ai) is an eigenvalue-eigenvector pair for (B.3).

Proof of Proposition 3. Let A be restricted to be of the form A = P⊥a for some a ∈ R
(n−f)×k. The

optimal a then solves

max
a

tr{(P⊥a)′SXY SY X(P⊥a)
(
(P⊥a)′[SXX − ρ2R′R](P⊥a)

)−1}

The main result of the proposition now follows directly from Lemma 1 with the (n−f)× (n−f) matrices

Γ = P⊥′SXY SY XP⊥ and Λ = P⊥′[SXX − ρ2R′R]P⊥
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